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Abstract. In muonic atoms the Uehling potential (an effect of a free electronic vacuum polarization loop)
is responsible for the leading contribution to the Lamb shift causing the splitting of states with ∆n = 0
and ∆l �= 0. Here we consider the Lamb shift in the leading nonrelativistic approximation, i.e., within
an approach based on a certain Schrödinger equation. That is valid for low and medium Z as long as
(Zα)2 � 1. The result is a function of a few parameters, including κ = Zαmµ/me, n and l. We present
various asymptotics and in particular we study a region of validity of asymptotics with large and small κ.
Special attention is paid to circular states, which are considered in a limit of n � 1.

PACS. 36.10.Gv Mesonic atoms and molecules, hyperonic atoms and molecules – 31.30.Jv Relativistic
and quantum electrodynamic effects in atoms and molecules

1 Introduction

The Gross structure of energy levels in all kinds of
hydrogen-like atoms is generally of the same form deter-
mined by the Schrödinger-Coulomb equation

E(nlj) � − (Zα)2mc2

2n2
,

where m is the mass of the orbiting particle which is an
electron in a conventional atom and a heavier particle in a
muonic or exotic atom. However, details of the spectrum
and, in particular, the structure of the energy levels with
the same value of the principal quantum number n are dif-
ferent in different kinds of atoms. For example, in muonic
atoms at low and medium Z the largest splitting between
states with the same n is the one for states with ∆l �= 0
(the Lamb splitting) which is essentially a nonrelativistic
effect.

In the nonrelativistic approximation the leading con-
tribution to the Lamb shift in muonic atoms (i.e., the
Uehling correction) has been known analytically for a
while for certain levels [1], however, only numerical re-
sults used to be quoted in the textbooks (see, e.g., [2]). A
reason for that is the complicated form of the analytic ex-
pressions. For instance, in the simplest case of the ground

a e-mail: sek@mpq.mpg.de

state the result is of the form [1]

∆E(1s) = − α

3π
(Zα)2mc2

{
−4 + κ2 − 2 κ4

κ3
A(κ)

+
4 + 3 κ2

κ3

π

2
− 12 + 11 κ2

3 κ2

}
, (1)

where

A(κ) =
arccos(κ)√

1 − κ2
=

ln
(
κ+

√
κ2 − 1

)
√
κ2 − 1

, (2)

κ =
Zαm

me
, (3)

and me is the electron mass. Expressions for other states
are similar, but more complicated. They involve functions
A(κn) with a characteristic parameter

κn =
κ

n
, (4)

and coefficients similar to those in equation (1) depend on
values of the principal and orbital quantum numbers, n
and l.

The mass of the orbiting particle m in a non-
conventional hydrogen-like atom is much above the elec-
tron mass me. We consider here the vacuum polarization
effects for a hydrogen-like atoms with an orbiting parti-
cle, which in particular may be a muon (mµ � 207me;
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κ � 1.5Z), a pion (mπ � 273me; κ � 2Z), an antiproton
(mp � 1836me; κ � 13Z) etc. The relativistic effects for
those atoms are quite different for various reasons, while
the result in the leading nonrelativistic approximation is
the same. Further we do not distinguish between vari-
ous possibilities of the orbiting particles and mainly speak
about a muon, but the equations could be applied to any
orbiting particle.

Analytic results have been known for some time even
for hydrogen-like atoms with a Dirac particle [3] and since
recently for the case of a Klein-Gordon particle [4]. They
are rather cumbersome, containing the hypergeometric
function 3F2 and far from being transparent. For instance,
the relativistic result [3,4] for the nl states reads as a finite
sum over basic integrals

Kabc(κ̃n) =
1
2
κ̃c

nB
(
a+ 1/2, 1− b/2 + c/2

)
× 3F2

(
c/2, c/2 + 1/2, 1 − b/2 + c/2;

1/2, a+ 3/2 − b/2 + c/2; κ̃2
n

)
− c

2
κ̃c+1

n B
(
a+ 1/2, 3/2− b/2 + c/2

)
× 3F2

(
c/2 + 1, c/2 + 1/2, 3/2 − b/2 + c/2;

3/2, a+ 2 − b/2 + c/2; κ̃2
n

)
, (5)

where 3F2

(
α1, α2, α3; β1, β2; z

)
stands for the generalized

hypergeometric function (see, e.g., [5]) and B
(
α1, α2

)
is

the beta function. The parameters a, b, c are linear func-
tions of n and l in the nonrelativistic case, while for the rel-
ativistic results they contain certain additions of relativis-
tic corrections which go to zero at the limit of (Zα) → 0.
The argument of 3F2, κ̃2

n, is reduced to κ2
n in the nonrel-

ativistic approximation.
Meanwhile, muonic atoms offer a special region of pa-

rameters where the result can be essentially simplified (see
e.g. [3,6]). For instance, the Uehling correction for the
ground state [3,6] (cf. Eq. (1)) takes the form

∆E(1s) � −α
π

(Zα)2mc2
(

2
3

ln
(
2κ

) − 11
9

)
. (6)

The simplification is possible because in the range of
medium Z we can apply for the ground state a double
expansion over two parameters:

Zα � 1,
κ � 1. (7)

Here and further we consider only a leading non-
relativistic approximation (i.e., the leading term of the
Zα expansion).

Highly excited states in muonic and exotic atoms are
of particular interest for precision measurements because
they offer a certain suppression of the interaction between
the nucleus and the orbiting particle. The n dependence of
theoretical expressions, even of the simplest asymptotics,
is not a trivial issue. One can see from expressions with
the generalized hypergeometric function 3F2 that while

the argument is κ2
n, the parameters are n dependent and

in fact in actual situations some are proportional to n.
In particular, the parametrical structure of asymptotic

results for high κn can be easily understood in the coordi-
nate representation since the characteristic radius of the
potential is the Compton wave length of an electron �/mec
and the radius of atomic states is typically �n2/Zαmc.
Thus, the actual expansion is in n/κn, rather than just
in 1/κn. A similar situation is with low κn. Study of the
n dependence and a determination of a real parameter of
expansion are important to find the range of validity of
various asymptotics.

Here we derive a general expression for the Lamb shift
at medium values of the nuclear charge Z. Finally the
vacuum polarization correction is presented in the leading
nonrelativistic approximation in the form

∆E(nl) =
α

π
(Zα)2

mc2

n2
Fnl(κn) . (8)

The Lamb shift splits the levels with ∆n = 0 and ∆l �= 0
and for this reason we also consider a specific difference

Φnll′ (κn) = Fnl(κn) − Fnl′(κn) , (9)

and typically for our calculations l′ = l + 1.
We find in this paper asymptotics for low and high κn

and determine regions of their validity. We study in more
detail circular states and show that for them the low-κn

expansion is an expansion over nκn = κ, while the high-κn

asymptotics is actually an expansion over n2/κ.
Additionally to well-defined regions of these expan-

sions (κ� 1 or n2/κ� 1) there are also two intermediate
regions:

– low κn, when κn � 1, but nκn ∼ 1;
– high κn, when κn � 1, but κn/n ∼ 1.

We discuss behavior of the Uehling correction in these two
specific regions.

2 The Uehling correction
in the nonrelativistic approximation:
general consideration for the Lamb shift

Let us first remind how the Uehling correction is calcu-
lated in a general case. The Lamb shift in muonic atoms
is a result of perturbing the Coulomb potential

VC(r) = −Zα
r

(10)

by the Uehling potential [7]

VU (r) =
α

π

∫ 1

0

dv
v2(1 − v2/3)

1 − v2

(
−Zα

r
e−λr

)
, (11)

where the dispersion ‘photon’ mass

λ =
2me√
1 − v2

(12)
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plays a role of the inverse Yukawa radius. Here and for
other calculations in this paper we use relativistic units in
which � = c = 1, while for final results we restore c and �

if necessary.
The Lamb shift in the nonrelativistic approximation is

of the form

∆E(0)(nl) =
∫
dr r2|Rnl|2VU (r)

=
α

π
(Zα)2

m

n2
Fnl(κn), (13)

where Rnl(r) is the radial part of the Schrödinger wave
function in a hydrogen-like atom

ϕnlm(r) = Rnl(r)Ylm(r/r) . (14)

Applying the well-known analytic expression for Rnl(r)
to equation (13) and integrating over r, we obtain (see
Eq. (f.9) in [8])

∆E(0)(nl) = −α(Zα)
2nπ

(
2Zαm
n

)2l+3 (n+ l)!
(2l + 1)!(n− l − 1)!

×
∫ 1

0

dv
v2(1 − v2/3)

1 − v2
λ2(n−l−1)

(
2Zαm
n

+ λ

)−2n

× 2F1

(
−n+ l + 1,−n+ l + 1; 2l+ 2;

(
2Zαm
nλ

)2
)
.

(15)

After replacing the hypergeometric function by an explicit
finite sum, we integrate over v and arrive at the following
expression for Fnl:

Fnl(κn) = − (n+ l)!
(n− l− 1)!

n−l−1∑
i=0

1
(2l + i+ 1)!

1
i!

×
(

(n− l − 1)!
(n− l − i− 1)!

)2 1

κ
2(n−l−1−i)
n

×
[
K1,2(n−l−i),2n(κn) − 1

3
K2,2(n−l−i),2n(κn)

]
,

(16)

where the integrals

Kabc(κ) =
∫ 1

0

dv
v2a

(1 − v2)b/2

(
κ
√

1 − v2

1 + κ
√

1 − v2

)c

(17)

can be expressed in general in terms of the generalized
hypergeometric functions (5) [3]. Here we mainly follow
our notation in [3], but the definition of the integral
K (see also [4]) is different from the related integral I
there. While in the nonrelativistic limit, when ε = 0
and the parameter c is integer, Ka,b,c(κ) = Ia,b,c(κ), in
the relativistic case with non-integer c the notation is
Ka,b,c(κ) = Ia,b,c+2ε(κ, ε).

We note that for integer a, b, c the result can be ex-
pressed in terms of elementary functions. Using recursive

relations (cf. [3])

1
κc+1

Ka,b,c+1(κ) = −1
c

∂

∂κ

[
1
κc
Ka,b,c(κ)

]
, (18)

Ka,b+1,c+1(κ) =
κ2

c

∂

∂κ
Ka,b,c(κ) (19)

we express the correction for an arbitrary state through
the expression for the ground state

Fnl(κn) =
(n+ l)!

(n− l − 1)!(2n− 1)!

n−l−1∑
i=0

1
(2l + i+ 1)!

1
i!

×
(

(n− l − 1)!
(n− l − i− 1)!

)2 (
1
κn

)2(n−l−1−i)

×
(
κ2

n

∂

∂κn

)2(n−l−i−1)

κ2(l+i+1)
n

(
∂

∂κn

)2(l+i)
F10(κn)
κ2

n

.

(20)

The result for F10

F10(κ) = −K122(κ) +
1
3
K222(κ), (21)

which follows from equation (16), is known in simpler
terms and in particular in terms of elementary functions
(see Eq. (1)). The general expression (20) now presents a
correction for any states in terms of elementary functions.
Such an expression is also very useful to derive various
asymptotics once we find related asymptotics for F10(κ).
Another way of the Fnl presentation as a single finite sum
can be found in [9].

3 Asymptotic behavior at large κn

In the case of κn � 1 we can use asymptotics for the
ground state function F10 (cf. [3] and Eq. (6))

F10(κ) = −
[
2
3

ln
(
2κ

) − 11
9

]
− π

2
1
κ

+
3
2

1
κ2

− 2π
3

1
κ3

+
[
5
4

ln(2κ) +
1
16

]
1
κ4

+
[

7
12

ln(2κ) − 5
18

]
1
κ6

+ . . . (22)

An expression for an arbitrary state can be also derived as
an expansion over 1/κn. Here we present few first terms
(cf. [3,9])

Fnl(κn) = −2
3

[
ln (2κn) + ψ(1) − ψ(n+ l + 1) − 5

6

]

− π

2
n

κn
+

1
2

[
n(2n+ 1) + (n+ l)(n− l − 1)

]
1
κ2

n

− π

9

[
(2n+ 1)(n+ 1) + 3(n+ l)(n− l − 1)

]
n

κ3
n

+ . . . ,

(23)
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where ψ(x) = Γ ′(x)/Γ (x) is the logarithmic derivative of
the gamma function and

ψ(n) − ψ(1) =
n−1∑
i=1

1
i
.

The results for the asymptotics of the difference (9) related
to the Lamb shift are much simpler than the result for each
level separately:

Φn,l−1,l(κn) = −2
3

1
n+ l

+
l

κ2
n

− 2π
3
n l

κ3
n

+ . . . (24)

To test our calculations, we consider a limit lnκn � 1
and find the leading logarithmic term within the effective
charge approach with the help of a substitution

Zα −→ Zα(κn) = Zα

(
1 +

2α
3π

lnκn

)
. (25)

The result reads

F log
nl (κn) = −2

3
lnκn . (26)

The logarithmic contribution vanishes for the Lamb split-
ting Φn,l−1,l. The logarithmic results are in agreement
with the direct calculations above.

4 Asymptotic behavior at large κn and large n

We note that the asymptotic coefficients depend on n and
one may wonder about their behavior at high n. To study
this we apply the well-known expansion for ψ(z) at high z

ψ(z + 1) = ln z +
1
2z

− 1
12z2

+ . . .

The result for the Uehling correction reads

Fnl(κn) = − 2
3

[
ln

(
2κn

n+ l

)
− C − 5

6

− 1
2

1
(n+ l)

+
1
12

1
(n+ l)2

+ . . .

]

− π

2

(
n

κn

)
+

3n2 − l(l+ 1)
2n2

(
n

κn

)2

− π

9
5n2 − 3l(l+ 1) − 1

n2

(
n

κn

)3

+ . . . , (27)

where C = −ψ(1) = 0.577 215 665... is Euler’s constant.
Certain simplifications are achieved once we do an as-
sumption on a particular relation between values of l
and n.

4.1 Low-l states

An important feature of the result in equation (27) is that
the parameter of expansion is rather n/κn than 1/κn. For

instance, our explicit result for Fnl at n � 1 and low l
(l � n) is

Fnl(κn) = − 2
3

[
ln

(
2κn

n

)
− C − 5

6
− 2l + 1

2n

+
6l(l+ 1) + 1

12n2
+ . . .

]
− π

2

(
n

κn

)

+
[
3
2
− l(l+ 1)

2n2

] (
n

κn

)2

− π

[
5
9
− 3l(l+ 1) − 1

9n2

](
n

κn

)3

+ . . . (28)

We keep here the l dependence in the 1/n2 terms in order
to derive a related result for the Lamb splitting

Φn,l−1,l(κn) =
1
n

{
−2

3
+

2l
3n

+
1
n

(
n

κn

)2

− 2π
3n

(
n

κn

)3

+ . . .

}
. (29)

We note that the expansion in (28) and (29) is effectively
done in n/κn. Meanwhile, the leading term in (29) is sup-
pressed by a factor of 1/n and the two first corrections are
additionally suppressed by 1/n.

4.2 Near circular states

After studying n � 1 at low l, we turn to another case
of n � 1 at low values of the radial quantum number
nr = n− l − 1 ∼ 1. In particular, nr = 0 is related to the
so-called circular state. In the limit of high κn and n we
obtain

Fn,n−nr−1(κn) = −2
3

[
ln

(κn

n

)
− C − 5

6
+

2nr + 1
4n

+ . . .

]

− π

2

(
n

κn

)
+

[
1 +

2nr + 1
2n

+ . . .

](
n

κn

)2

− π

9

[
2 +

6nr + 3
n

+ . . .

] (
n

κn

)3

+ O
((

n

κn

)4
)
. (30)

In the same limit the specific difference related to the
Lamb shift is

Φn,n−nr−2,n−nr−1(κn) =

1
n

{
−1

3
+

(
n

κn

)2

− 2π
(
n

κn

)3

+ . . .

}
. (31)

The difference is suppressed by 1/n, as well as for low l,
but, in contrast to equation (29), there is no additional
suppression. As a result, we see that the high-κn expan-
sions above (cf. [3,9]) are valid only in the case of κn � n,
which reduces the range of their applicability drastically.
We consider the case of κn � 1, but not κn � n in Sec-
tion 6.
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5 Asymptotics at low κ

In principle we are interested in high rather than in low
κ values, because the problem is related to muonic and
exotic atoms. However, for high n, even for κ� 1 we can
easily arrive at a situation when κn = κ/n � 1 and thus
this region is of interest.

The asymptotic behavior of Fnl(κn) at small values of
κn was studied in [3] (see also [9]). Various approaches can
be used for that. One may start from our expression (20)
(cf. [3,9]), taking into account that

F10(κ) = − 4κ2

15
+

5πκ3

48
− 12κ4

35
+

7πκ5

64
− 64κ6

189

+
27πκ7

256
− 32κ8

99
+

77πκ9

768
− 1536κ10

5005
+ . . . ,

(32)

or apply equation (16) with Kabc presented in terms of in-
tegral (17) or of generalized hypergeometric functions (5).
Actually, the latter is the most straightforward way to
obtain a low-κn expansion. In case κn � 1 the expansion-
reads

Fnl (κn) = − (n+ l)! κ2l+2
n

(2l + 1)!(n− l − 1)!

{
1

2(l+ 1)
(2l + 4)!!
(2l + 5)!!

− π (nκn)
1

2l + 3
(2l + 5)!!
(2l + 6)!!

+ (nκn)2
(

4l+ 5
l + 1

+
l + 1
n2

)
1

4(l + 2)
(2l + 6)!!
(2l + 7)!!

− π(nκn)3
(

4l+ 7
l + 1

+
3l + 5
n2

)
1

6(2l+ 5)
(2l+ 7)!!
(2l+ 8)!!

+ O((nκn)4
)}
. (33)

The first term of this expansion is obtained in [9] and
is in agreement with our expression. As one can see, the
series is in fact over nκn = κ rather than κn. That sets
a condition for applicability of the low-κn asymptotics as
κn � 1/n. In particular, it means that the asymptotics
equation (33) cannot be applied for Rydberg states even
for the muonic hydrogen, i.e., for the smallest possible Z
(Z = 1), where κ ∼ 1.5 and κn ∼ 1.5/n.

6 High n asymptotic behavior

We see that while we expand the generalized hypergeo-
metric function in terms of either κn or 1/κn, the real pa-
rameters of both expansions involve a factor of n directly.
That is due to the increase of the coefficients of the κn- or
1/κn-expansions with n which technically originates from
the expansion of the factor

(
κn

√
1 − v2

1 + κn

√
1 − v2

)c

(34)

in the basic integral Kabc(κn), while c = 2n.
We note that a consideration of high n is not unreal-

istic. For instance, in [neutral] antiprotonic helium for re-
alistic levels [10] we find Z = 2, n � 30 � 1, κ � 27 � 1,
κn � 1. One of the reasons to study high-n states is that
they very weakly interact with the nucleus, especially if a
value of l is also high. Such an immunity to the nuclear-
structure effects is an advantage from both theoretical and
experimental point of view. Therefore and also because of
simplifications in calculations we consider below circular
or near circular states at n� 1.

6.1 Limit of low κn for the near-circular states

The combination of the Kabc integrals which actually
enters the equation for the vacuum-polarization energy
shifts is

Kbc(κn) = K1bc(κn) − 1
3
K2bc(κn) . (35)

We find that b � n for the near-circular states, and, as
long as we use (16), c = 2n for any state.

Once we know the general expression (5) in terms of
3F2 (cf. [3]), we can consider in each order of the κn ex-
pansion only terms leading in n (we did above a similar
procedure to prove for the few first terms of series that
the expansion is over nκn, and not over just κn).

Collecting the leading in n terms we arrive at the result
in the limit n� 1, κn � 1 and b� n

Kb,2n(κn) � (κn)2n

2
B

(
n,

3
2

) [
2F1

(
n, n;

1
2
; κ2

n

)

− 2(nκn) 2F1

(
n, n;

3
2
; κ2

n

)]
. (36)

We note that

2F1(n, n; ν; κ2
n) � Γ (ν) (nκn)1−ν Iν−1(2nκn) ,

B(n, ν) � Γ (ν) n−ν (37)

at ν � n, where Iν(z) is the modified Bessel function. For
the latter one can apply the well-known explicit expres-
sions for ν = 1/2, 3/2 and we arrive at the expression

Kb,2n(κn) �
√
πκ2n

n

4n3/2
e−2nκn . (38)

To express the correction to energy Fnl(κn) in terms
of the basic integrals Kb,2n(κn) for near-circular states
(nr = n − l − 1 � n) we need to transform the related
coefficients in (16) in the limit of high n. We note that
the integral Kb,2n(κn) does not depend on b in the lead-
ing 1/n-approximation and thus the l dependence of the
correction comes from the l dependence of the coefficients
of (16). Eventually we find

Fnl(κn) � −
√
π κ2l+2

n

4n3/2

(2n)nr

nr!
e−2nκn

= −
√
π

4n3/2

κ2n
n e−2nκn

nr!

(
2n
κn

)nr

. (39)
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To conclude this consideration we need to discuss the ac-
curacy and validity of our derivation. It is valid for κn � 1
and κ ∼ 1 and the corrections are of relative order 1/n.
In the case of κ� 1 it is consistent with the leading term
of the low-κn expansion (33).

6.2 The limit of high κn for the near-circular states

For κn � 1 we also consider only near-circular states, for
which b ∼ nr = n− l − 1 � n. We can rewrite Kb,2n(κn)
in terms of the basic integrals as follows

Kb,2n(κn) =
∫ 1

0

dv
v2(1 − v2/3)
(1 − v2)b/2

(
κn

√
1 − v2

1 + κn

√
1 − v2

)2n

=
∫ 1

0

dv
v2(1 − v2/3)
(1 − v2)b/2

exp
{

2n ln
(

1 − 1
1 + κn

√
1 − v2

)}
.

If b� n, we can expand the exponential in the integrand
and find

Kb,2n(κn) �
∫ 1

0

dv
v2(1 − v2/3)
(1 − v2)b/2

e
− 2n

κn

√
1−v2 , (40)

that depends upon combination of parameters κn/n only.
After a substitute of the variable t = 1/

√
1 − v2 in this

integral we arrive at the result

Kb,2n(κn) �
∫ ∞

1

dt

√
t2 − 1
t6−b

2t2 + 1
3

e−
2nt
κn . (41)

Substituting the expression into the sum in equation (16),
and neglecting n− l as compared with n in coefficients of
the sum, we obtain

Fnl(κn) � −
∫ ∞

1

dt

√
t2 − 1
t4

2t2 + 1
3

e−
2nt
κn

×
nr∑

j=0

(nr)!
(nr − j)!

1
(j!)2

(√
2n
κn

t

)2j

. (42)

Similarly to the previous subsection, we find that our
derivation is appropriate for 1/κn � 1 and n/κn ∼ 1
and the result has a relative uncertainty on the order of
1/n.

6.3 Comparison of low-κ and high-κ asymptotics

The region of highest interest is the one for high-κ is
when 1/κn � 1, but not n/κn � 1, since for the op-
posite situation (n/κn � 1) we have already known the
proper asymptotic form of the correction. We note that
for the region of interest κn/n can be about unity or even
larger (e.g., as in the case of 1/κn ∼ n−1/2 � 1 and
n/κn ∼ n1/2 � 1). In particular, if κn/n � 1 the result
of the t-integration in equation (42) will mainly come from
a narrow region (t− 1) � 1. That means that we can im-
prove the final result once we consider a complete series

Fig. 1. Ratio of different Fn,n−1 asymptotics and its exact
values for the circular state with n = 100: (a) – nκn � 1
(Eq. (33)), (b) – κn � 1 (Eq. (38)), (c) – κn � 1 (Eq. (44)), (d)
– κn � 1 (Eq. (41)), (e) – κn � 1 (Eq. (43)), (f) – κn/n � 1
(Eq. (30)); the horizontal axis is related to Fn,n−1.

for the logarithm in Section 6.2, and setting t = 1 for all
terms except of the leading term of the expansion

exp
{

2n log
(

1 − 1
1 + κn

√
1 − v2

)}
�

(
κn

1 + κn

)2n

e−
2n
κn

(t−1).

The final estimation reads for high κn

Kb,2n(κn) �
(

κn

1 + κn

)2n ∫ ∞

1

dt

√
t2 − 1
t6−b

2t2 + 1
3

e−
2nt
κn .

(43)
We can also rewrite the result for low κn (Eq.(38)) as

Kb,2n(κn) �
(

κn

1 + κn

)2n √
π

4n3/2
. (44)

Comparing those two asymptotics for the circular-state
correction, we find that the integral K2,2n(κn) can be pre-
sented as a product of a factor

(
κn

1 + κn

)2n

(45)

and a smooth function. The factor is varying in an ex-
tremely broad region of κn: from low κn (κn � 1/n) to
large κn (κn � n), while the smooth function changes
from being proportional to n−3/2 to ln(κ/n2). Because of
so smooth behavior we expect that the asymptotics with
the explicit factor equation (45) can be successfully ap-
plied for a somewhat larger region, however, their accu-
racy there is unclear. Various asymptotics are compared
to the exact result for n = 100 in Figure 1. In particu-
lar we see that an explicit presentation of the factor of
(κn/(1 + κn))2n really improves agreement between the
asymptotics and the exact solution.
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Table 1. Asymptotics at x � 1 for the Uehling cor-
rection for the lowest s states. The correction is pre-
sented in terms of a dimensionless function Fnl: ∆E(nl) =
(α/π) ((Zα)2mc2/n2)Fnl(κn).

n Fn0(x)

1 −2

3
ln(2x) +

11

9
− π

2x
+

3

2x2
− 2π

3x3
+ . . .

2 −2

3
ln(2x) +

14

9
− π

x
+

6

x2
− 14π

3x3
+ . . .

3 −2

3
ln(2x) +

16

9
− 3π

2x
+

27

2x2
− 46π

3x3
+ . . .

4 −2

3
ln(2x) +

35

18
− 2π

x
+

24

x2
− 36π

x3
+ . . .

5 −2

3
ln(2x) +

187

90
− 5π

2x
+

75

2x2
− 70π

x3
+ . . .

7 Other states

Above we obtained the high-n asymptotic expressions in
two specific regions of parameters where κn ∼ 1/n and
κn ∼ n for the circular and the near-circular states only.
We are also interested in finding asymptotics in these re-
gions that are valid for low l.

For low κn and l � n we can use an approximate
relation

K2(n−l−i),2n(κn) � κ2n
n

∫ 1

0

dv v2

(
1 − v2

3

) (
1 − v2

)l+i

× exp
{
−2nκn

√
1 − v2

}
, (46)

and, neglecting l as compared with n in coefficients of the
sum equation (16), obtain an approximation

Fnl(κn) � − (nκn)2(l+1)

n

∫ 1

0

dv v2

(
1 − v2

3

) (
1 − v2

)l

× exp
{
−2nκn

√
1 − v2

} n−l−1∑
i=0

(
nκn

√
1 − v2

)2i

i! (2l+ i+ 1)!
.

We can see that the asymptotic depends upon a combina-
tion of parameters nκn, confirming the above-mentioned
fact that it is the real parameter of expansion at low κn.

In the other region corresponding to κn ∼ n we do
not see a simple way to find a proper asymptotic form for
low-l states.

8 Summary

Concluding, we have to briefly discuss corrections to the
results derived. Since the parameter m/M (here M is the
mass of the nucleus) in muonic, pionic and other exotic
atoms is not as small as in conventional atoms, an impor-
tant question is the accuracy of our results obtained in the
external field approximation, i.e. in the limit m/M = 0. In
antiprotonic atoms such effects are even more important

Table 2. Asymptotics of the Lamb-shift-induced differ-
ence at x � 1 for the lowest states presented in terms
of a dimensionless function Φnab: ∆E(n, l) − ∆E(n, l′) =
(α/π) ((Zα)2mc2/n2)Φnll′(κn).

n Φn01(x) Φn12(x) Φn23(x) Φn34(x)

2 −2

9
+

1

x2

− 4π

3x3
+ . . .

3 −1

6
+

1

x2
− 2

15
+

2

x2

−2π

x3
+ . . . −4π

x3
+ . . .

4 − 2

15
+

1

x2
−1

9
+

2

x2
− 2

21
+

3

x2

− 8π

3x3
+ . . . −16π

3x3
+ . . . −8π

x3
+ . . .

5 −1

9
+

1

x2
− 2

21
+

2

x2
− 1

12
+

3

x2
− 2

27
+

4

x2

−10π

3x3
+ . . . −20π

3x3
+ . . . −10π

x3
+ . . . −40π

3x3
+ . . .

Fig. 2. Ratio of different Fn,n−1 asymptotics and its exact val-
ues for the circular state with n = 30: (a) – nκn � 1 (Eq. (33)),
(b) – κn � 1 (Eq. (38)), (c) – κn � 1 (Eq. (44)), (d) – κn � 1
(Eq. (41)), (e) – κn � 1 (Eq. (43)), (f) – κn/n � 1 (Eq. (30));
the horizontal axis is related to Fn,n−1.

than in the muonic case. The higher m/M corrections,
which are quite important for muonic atoms, can be easily
taken into account for the Lamb shift in the nonrelativis-
tic approximation by substituting the mass of the orbiting
particle m for the reduced mass mR = mM/(m+ M) in
equation (8) and κ for κR = ZαmR/me.

The functions Fnl are presented above for arbitrary nl
in a closed analytic form in various ways. Certain asymp-
totics are also presented. The results at κn � 1 for the
lowest states are summarized in Table 1. They are simple
and transparent. The Lamb shift result in equation (16) is
obtained in the nonrelativistic approximation and is valid
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for any hydrogen-like atom as far as the relativistic cor-
rections can be neglected. Some asymptotic results for the
splitting of levels with ∆l = 1 at κn � n for some low ly-
ing states are summarized in Table 2.

We studied the applicability of naive low-κ and high-
κ asymptotics and found that the region where they are
valid strongly depends on n. For high n we considered
some additional asymptotics (see, e.g., Fig. 2 where the
results are presented for a realistic value of n = 30). We
found a sum of the leading terms for n� 1 expansions for
both low-κ and high-κ cases. In particular, we found that
most of the change by orders of magnitude of the Uehling
correction in the circular states can be presented in terms
of a simple factor (κn/(1 + κn))2n which is multiplied by
a smooth function.

All results are obtained in the leading nonrelativistic
approach and corrections due to that are of relative order
(Zα)2. The relativistic effects will be considered elsewhere.
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